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Note 

Analysis of the Effect of Boundary Conditions on Numerical 
Stability of Solutions of Navier-Stokes Equations 

The purpose of this note is to emphasize the cause of the computational instabilities of the 
ADI scheme. A heuristic extension of the Fourier method involving the effects of various 
types of boundary conditions is applied to two problems, the driven cavity flow and the 
natural convection in an inclined solar cell. 

1. INTRODUCTION 

When an ADI-type time marching procedure is used to solve the unsteady 
Navier-Stokes equations, it is well known [l] that numerical stability problems 
occur, although an unconditional stability is predicted by analysis using the conven- 
tional Fourier-Von Neumann method. As suggested by Roache [ 11, the lack of 
convergence may be due to non-linear instability for the interior points, or to the 
influence of the boundary conditions, which are not taken into account in this 
method. 

The purpose of this note is to emphasize the cause of the computational 
instabilities. For this, an extension of the Fourier method involving various types of 
boundary conditions is applied to two problems. Such an extension, which has been 
similarly worked out by Taylor [2], and Trapp and Ramshaw [3], is only heuristic. 
But, as noted in Ref. [3], the conventional method is generally applied as a local 
method and is then also heuristic. In the case of a parabolic equation [3], the results 
obtained with this method have been shown to be very close to those obtained with 
more elaborate methods, such as the energy method. Another type of stability 
analysis, which is more complete than the Fourier method and which takes into 
account the boundary conditions, has been worked out by Smolderen [4]. In this last 
study, improvements have been made in the case of hyperbolic equations treated with 
an explicit scheme. They exhibit the influence of the boundary conditions on the 
generation of instabilities. In the case of the Navier-Stokes equations discretized with 
an ADI scheme, this type of stability analysis is not easy to apply, and the heuristic 
extension of the Fourier analysis has been preferred, as a first approach, to determine 
the stability conditions. 

Some authors [2,5-71 have previously mentioned from numerical experience that 
the boundary conditions imposed on the AD1 scheme a time step restriction of the 
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form At/h’ < a. However, the applications were restricted to a limited range of flows 
and the investigation of the numerical stability was not sought systematically. 

The present stability analysis has been used for the driven cavity problem and for 
the natural convection in an inclined solar cell, differentially heated. This study aims 
to derive stability criteria which involve the main parameters of these model 
problems, viz., the Reynolds number, Re (driven cavity problem), the Prandtl 
number, Pr, and the Rayleigh number, Ra (natural convection problem). 

2. GOVERNING EQUATIONS 

The governing equations for these two problems are considered in a non- 
conservative form in vorticity, temperature, and stream function variables. 

& -t UC, + UC, = a,(~,, + C,,,) + a,(sin $2 T, + cos R TX), (14 

Tf + UT, + VT, = a,(T,, + TJr (lb) 

w,, + wyy = L (lc) 

where u = wY and v = -vX. 
In the case of the driven cavity [ 1,8], the coefficients are a, = l/Re, a2 = 0 and, 

then, there is no need to solve the energy equation. In the case of the natural 
convection [9, lo], the coefficients are a, = Pr, a, = Ra Pr, and a3 = 1, and R is the 
inclination angle measured from the horizontal. 

In many applications, the boundary conditions on the variable v are overspecified: 
w and its first derivative normal to the wall, vn, are given on each boundary (no- 
permeability and no-slip conditions). For the energy equation, the problem is well 
specified either by Dirichlet conditions or by Neumann conditions. However, 
concerning Eq. (la), no physical condition exists for the vorticity at the boundaries, 
and [ values are determined by an expansion procedure using the no-slip conditions. 
Second-order formulations are derived from Ref. [ 11: 

Woods’ formulation: <, =- i &+, + $- VW- I - $- Wr i- i UH., Pa) 

Jensen’s formulation: (, = & (-y/,+2 + 8w,+, - 7v,.) + ; u,., (2b) 

where h is the spatial step size. 
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3. NUMERICAL SCHEME 

The ADI method is described in the driven cavity case. The advancement over 2At 
is accomplished in two steps for the vorticity transport equation (1 a), 

i 
fl+l 

- r* 
At 

+ UC:+’ + I;,*,> = 0, (3b) 

where the superscripts (n) refer to time level. 
The streamfunction equation (lc) is similarly solved as a time-dependent problem, 

with two fictitious time steps As, 

v nt 1.’ -v nt 1.1 

A7 
- (yY$‘J+ g,“**) + r+’ =o, 

YJ 
n+ 1./t I 

- vJn+ I.’ 
AS 

- (Q.‘+ + lp’) + y+’ =o, 

where 1 is the iteration index. The first step (n + 1, I= 0) is identical to step n. When 
the transient solution is sought, iteration to convergence is used at each step (n + 1). 
In the present study the steady solution is required and only one iteration is used with 
the parameter A7 arbitrarily chosen equal to At. 

The half-step * has no physical meaning, but it is necessary to use a correct 
prescription of <* on the boundaries compatible with r” and rt i [ 111. The spatial 
derivatives are discretized with a second-order, accurately centered scheme. The 
nonlinear coupling terms, u and u, are expressed at the middle point (i, j) of the “tive- 
point” basic mesh shown in Fig. 1. 

FIG. 1. Differencing mesh system: zero boundary point (case A); one boundary point (case B); two 
boundary points (case C). 
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4. STABILITY ANALYSIS 

The solutions of the discrete equations at the interior points are studied by using 
Fourier series expansions of components with separated variables, 

where the subscripts (ij) refer to x, y indices (1 < i < I, 1 cj < J). The solutions are 
considered locally at three points in each spatial direction. Three main cases are to be 
investigated (Fig. 1): 

- the conventional case, denoted (A), involving interior points only; 
- the case, denoted (B), where only one mesh point is on the boundary; 

(Associated conditions will be denoted “wall conditions.“) 
- the case, denoted (C), where two mesh points are on the boundary. (Associated 

conditions will then be denoted “corner conditions.“) 

The linear coupled relations, either (2a) or (2b), are used as boundary conditions: 

(64 

(6b) 

with 

,yyJ = 0. (6~) 

Relations (5), (6) are substituted into Eqs. (3), (4), which are solved as follows: 

(7) 

The necessary condition for the suppression of error amplification requires that 

Max I&, ,< 1, (8) 

where the ,I, are the eigenvalues of the matrix. The elements of G depend on the coef- 
ficients of the linearized systems, and in particular the coefficients u and v of the 
convective terms. Their importance will be shown later. 

When the analysis is applied for system (3), (4) at interior points (case A), 
condition (8) is quite obviously shown to be always verified, which indicates uncon- 
ditional stability. When it is applied in the neighborhood of the boundaries (cases B 
and C), the eigenvalues do not satisfy condition (8) for any value of the parameters. 
Then, one is interested in the study of the neutral stability conditions, that is, 
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FIG. 2. Influence of Reynolds number on the numerical stability conditions (driven cavity). 

Max IL, / = 1. Since G is only a (2 x 2) matrix, the eigenvalues are determined by a 
quadratic equation. The coefficients are complex and include the characteristic terms 

At v& 1 At 
u1-7 -- 

h ‘h’ Re h*’ 

where ui and U, are the values of u and u at the middle point of the mesh at the row 
adjacent to the boundary. They have, however, a quite complicated functional form; 
and it is then not possible to propose simple analytical relations between the 
parameters to characterize the neutral stability state. Such relations, which have the 
general form 

= 0, (9) 

are determined “numerically” for each set of Re and h and for arbitrarily fixed u, and 
U, by calculating the associated At. The results are presented in Fig. 2. The solutions 
corresponding to U, = U, = 0 (Stokes problem) will be of significant interest and will 
be denoted At,, in further discussion. 

5. DRIVEN CAVITY FLOW 

The governing equations have been numerically integrated with the previously 
mentioned AD1 technique by using the lagged Woods’ estimate (2a) of the wall 
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values of [, i.e., cE+’ = ” &,. For fixed values of Re, the behavior at convergence has 
been studied by varying At; when At is gradually increased from zero, the 
convergence is accelerated up to an optimum At value, beyond which the iterative 
process rapidly becomes non-convergent. The experimental critical values of At, 
denoted At,, are presented in Fig. 2 versus Re for fixed values of h (disregarding the 
level of accuracy, which is indeed strongly dependent on Re). 

For the case U, = U, = 0, the “wall” and the “corner” stability limits are the most 
restrictive conditions, respectively, for Re ‘? 4 and Re? 4, and, thus, should 
determine the overall stability. 

First, we observe that the calculations are stable for At,/h’ larger than the 
predicted values (Fig. 2). Verification has been made that this might not be due to the 
fact that U, and U, are non-zero in practice. Indeed, when tested with the range of the 
calculated values of U, and U, for Re > 4, the resulting “wall” conditions appear, on 
the contrary, to be slightly more restrictive. 

Second, we note that the experimental values At,/h’ are included between the 
“wall” and “corner” conditions At,,/h2, as shown in Fig. 2, for Re? 200. When 
Re 5 4, these two conditions are very close and allow a fairly precise prediction. 
When 200 7 Re 7 4, they become substantially different; although it is less 
restrictive, the “corner” condition then appears to be a practical upper limitation for 
the numerical stability. Concerning this range of Re, the numerical results show that 
the experimental condition At,/h’ decreases from the “corner” condition, where 
h = l/10, towards the “wall” conditions when the spatial step size is relined, as 
shown in Fig. 2 for Re = 20, 50, 100, and 150. 

For Re > 200 and h = l/10, the experimental values At,/h2 diverge from the 
predictions. Such a divergence has been conjectured to be connected to the influence 
of the coefficients U, and U, on the “corner” conditions. These coefficients become 
substantially different from zero for large Re. This fact is obvious in Fig. 2, which 
gives the predictions obtained with some arbitrarily fixed non-zero values of U, and 
vi. These curves match the predictions At,,/h* for a wide range of Re values 
(Re ? 40). When Re is further increased, these curves diverge from these predictions 
and finally exhibit a sharp decrease of At,/h*. The limiting values of Re have been 
found to correspond, then, to a cell Reynolds number limitation in the corner (I U, 1 Re 
h = 4 or 1 ZJ, 1 Re h = 4). This cell Reynolds number limitation is half as restrictive as 
the one usually found in the literature for an explicit scheme [2]. It is, however, more 
restrictive than the empirical restriction on spatial mesh size mentioned by Torrance 
[6] for AD1 scheme applied to flows characterized by diffusion coefficients nearing 
unity (] U] h = 8 or 1 v ] h = 8). In addition, it is verified that the experimental values 
AtJh* are again included between predictions At,,/h’, when smaller step size values 
(h = l/20, h = l/30) are used. Moreover, this limitation on the size of h is not too 
restrictive, since it is also necessary to maintain accuracy through the boundary 
layer, in particular. 

Furthermore, it is to be noted that the temporal and spatial step sizes used by 
Morris [7], with the same AD1 scheme for (la), agree also quite satisfactorily with 
our stability predictions, although (lc) is solved by a successive overrelaxation 
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TABLE 1 

Morris Results (Re = 100) 

h l/14 l/16 l/32 l/56 

At/h2 49 40 48 28 

routine and the evaluation of 4, used is the first-order-accurate Thorn’s equation [ 11. 
These experimental conditions are shown in Table I for Re = 100 and for four values 
of h. 

Obviously, then, it is of practical interest to obtain simple analytical expressions of 
these predictions in order to enclose the experimental stability conditions. For this 
purpose, approximate analytical formulae of F have been sought for the “wall” 
conditions (B) by considering the simplification U, = v, = 0; F is then written as 

At 
when Re<$, -$= 2 Re, 

when 
At 

Re>;, $- 
1 + (1 t 24 Re)“’ 

12 * (lob) 

For the “corner” conditions (C), no simple analytical formulae have been found; 
therefore the following expressions of the critical values of At,, are obtained from 
curve fits to Fig. 2: 

when 0.20 < Re ( 2, At 
$- 0.40 Re0.60, (114 

when Re > 10, 
At 
.-A N 0.50 Re. 
h* (1 lb) 

6. NATURAL CONVECTION IN A SOLAR CELL 

When the natural convection is considered, the governing system involves the 
energy equation. The stability analysis is developed with one more variable, and the 
conditions are sought to be related to the physical parameters, Ra and Pr, under the 
form 

(12) 

Here, the Prandtl number, Pr, plays a role equivalent to the parameter l/Re of the 
previous problem. The range of Prandtl number values considered in this study is 

581:3613-10 



424 BONTOUX, GILLY, AND ROUX 
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FIG. 3. Influence of Rayleigh number on the numerical stability conditions (solar cell, Pr = 0.713, 
B = 60”). 

from 0.1 to 10. The theoretical analysis of the stability has been investigated in the 
cases of the “wall” conditions (B) and the “corner” conditions (C). 

One notes the presence of the Rayleigh number in (12), which couples momentum 
equations with the energy equation through the Archimedean forces. However, the 
conditions derived from the theoretical analysis of stability are predicted indepen- 
dently of Ra. This is confirmed by numerical experiments carried out by integrating 
the governing equations with Jensen’s wall vorticity (2b), in the case of a solar cell 
(Fig. 3). The calculations concern a squared cell, at an inclination angle of 60”, for 
Rayleigh number values ranging from 500 to 200,000. For given values of Ra in this 
range, the effect of dt on the rate of convergence of the AD1 algorithm has been 
investigated up to a limiting value At,, at which this algorithm breaks down: These 
critical experimental values At, are shown in Fig. 3 and are in good agreement with 
theory (wall and corner conditions), especially when the step size h is small. 

An analytical expression approximating the “wall” stability conditions has also 
been sought from (12) in the case U, = u, = 0, using Jensen’s wall vorticity. This 
expression is written as 

dt,,- 1 + (1 + 28/P@* 
h2 - 14 . (13) 
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FIG. 4. Influence of Prandtl number on the numerical stability conditions (solar cell, Ra = 500, 
R = 60"). 

Condition (13) exhibits an effect of Pr which has been controlled for two step sizes 
when 0.1 ( Pr ( 10 (Fig. 4). For the range of Prandtl number values, Pr 7 0.4, the 
agreement again appears to be entirely satisfactory between the values of dt, 
numerically tested for the “wall” stability condition (13). When Pr ? 0.4, the dt, 
values diverge from this condition and, as previously observed for the driven cavity 
case, admit the corner conditions as an upper limit. 

7. CONCLUSION 

In conclusion, it appears that the heuristic extension of the Fourier analysis, 
including the effect of the boundary condition as proposed in the present paper, may 
allow the prediction of the breakdown of the AD1 method used to solve numerically 
the two-dimensional Navier-Stokes equations. Criteria for the stability of this method 
have been derived in terms of the main physical parameters for problems as different 
as the motion in a driven cavity and the natural convection in a solar cell. 

When the coefficient of the diffusive terms is large (Re ‘? 4, Pr 7 0.4), the “corner” 
and “wall” stability criteria are slightly different and then give a rather precise 
prediction of the experimental condition. When the coefficient is small (Re 7 4, 
Pr ? 0.4), the two predictions differ strongly; the “wall” criterion is the most 
restrictive and gives a lower limit for the experimental At,/h*, while the “corner” 
criterion gives an overestimation for these experimental values. Moreover, the 
reliability of the criteria (lo), (1 l), (13), obtained in both these cases, is ensured 
when the cell Reynolds number is small near the corner, that is, when the spatial step 
size h is small enough. This last restriction is also imposed with respect to accuracy 
considerations. 
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APPENDIX: NOMENCLATURE 

Amplification matrix 
Spatial step size 
Normal to the boundaries 
Modulus of the Fourier component (Sb) 
Prandtl number 
Rayleigh number 
Reynolds number 
Time variable 
Static temperature 
Velocity components 
Velocity component values at the discretized points in the neighborhood 
of the boundaries 
Spatial variables 
Modulus of the Fourier component (5a) 
Time step sizes 
Vorticity 
Phase angles 
Eigenvalue of the matrix G 
Streamfunction 
Inclination angle 

Superscripts 

I Iteration index 
n Time index 
* Half-step for the AD1 method 
St Stokes conditions defined in Section 4 
C Stability conditions from the numerical experiments 
i, j Spatial location index 
W Boundary conditions 
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